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Abstract—Two types of test specimen for determining interfacial fracture toughness are calibrated
in this paper. Previous studies have shown that interfacial fracture toughness is strongly dependent
on mode mixity. Both specimen types presented are well-suited for investigating interfacial toughness
over a wide range of mode mixities. The structure of the near tip elastic fields for an interface crack
is examined and in particular near tip contact and the variation of mode mixity with distance are
dealt with. The concept of K dominance for interface cracks is discussed and a zone of K dominance
is shown to exist for the specimens calibrated, provided the zone of non-linear effects is small. A
procedure for determining the effect of residual stresses on the stress intensity factor is presented.

1. INTRODUCTION

A number of test specimens for investigating interfacial fracture toughness have been
developed recently (e.g. Suo and Hutchinson, 1989 Cao and Evans, 1989 ; Charalambides
etal., 1989 ; Wang and Suo. 1990). For these specimens a thin layer of material is sandwiched
between two layers of a sccond material. This type of specimen can be calibrated in
terms of the stress intensity fuctor for &4 homogeneous specimen of the bulk material. The
specimens presented in this paper consist of two slabs of dissimilar material bonded together
with a crack lying on the interface of the two materials. Two types of specimen are
calibrated: a Brazilian disk specimen and a bend bar type geometry. The lutter geometry
is calibrated for a three-point and four-point bend configuration. The four-point bend
specimen is a development of an carlier specimen used for measuring mixed mode fracture
toughness in homogencous materials (Suresh er al., 1990). The four-point bend specimen
and Brazilian disk are currently being used to investigate the fracture toughness of a
niobium/aluminit interface (Stout er af., unpublished).

A crack in an isotropic, homogencous material tends to grown in opening mode, and
hence fracture toughness is characterized by a single parameter, Mode [ toughness, Kc.
However, a crack lying on an interface often tends to grow along the interface. Since the
crack grows under mixed mode conditions it is necessary to quantify interfacial fracture
toughness as a function of mode mixity. The specimens presented here allow us to vary the
mode mixity systematically and thus fracture toughness can be measured for the full range
of mode mixities.

Results for a number of bimaterial systems are presented and attention is restricted to
plane stress and plane strain,

2. SPECIMEN GEOMETRY

The test specimens to be calibrated are shown in Fig. {. The symmetric four-point
bend and three-point bend specimens, shown in Fig. la, c are tension-dominated geometries
giving risc to pure Mode I conditions at the crack tip for a homogencous specimen. The
asymmetric four-point bend specimen, shown in Fig. 1b, has been used to measure fracture
toughness in a homogencous malterial (Suresh ef af., 1990). For a homogencous material
pure Modc Il conditions arc obtained with load offset. s = 0 (provided A # B). Increasing
the load offset increases the local Mode I contribution. Figurc 1d shows the Brazilian disk
specimen. The mode mixity is varied by changing the compression angle 0, which can range
from —a/2 to n/2. The calibration functions for a homogeneous Brazilian disk can be found
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Fig. 1. Test specimens. (a) Symmetric four-point bend bar, (b} asymmuetric four-point bend bar, (¢}
three-point bend bar, (d) Brazilian disk.

in Atkinson ef al. (1982). For a homogencous material pure Mode | conditions are achieved
when § = 0 and pure Mode I conditions when 0 = 257, Shetty et al. (1987) have used the
Brazilian disk to study the mixed mode fracture toughness of soda-lime glass. Wang and
Suo (1990) have measured interfacial fracture toughness for epoxy/metal and epoxy/ceramic
systems using a Brazilian disk sandwich.

For the bend bar the material to the left of the crack is designated material T and the
material to the right is material 2. For the Brazilian disk the upper material is material |
and the lower material 1s material 2.

3. INTERFACIAL FRACTURE MECHANICS
3.1. Elastic cruck tip fields
We consider a crack lying on an interface separating two isotropic elastic materials as

shown in Fig. 2. The standard notation for interface cracks is used throughout. The
asymptotic solution for the in-plane stresses is

|
6, = —==[Re {Kr"}6/(0;e)+Im {Kr*}6]/(0:0)]. )
2nr

¢ is the bimaterial constant given by
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material 1
y

material 2 -

Fig. 2. Crack lying on bimaterial interface.

L (ki + l/l‘z} ,
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where & = 3—4v for plane strain. k = (3 —v)/(1 +v) for plane stress, v is Poisson’s ratio,
and p the shear modulus. The subscripts 1 and 2 refer to the upper and lower material,
respectively. The dimensionless angular functions d;; and 6/ are given in Rice et al. (1990).
The functions are scaled so that the tractions ahead of the crack are given by:

)

t=t|e” = (0, +igy)hao =

¥, is the phase angle or mode mixity at distance r and gives the ratio of the normal to shear
stress ahead of the crack.
The complex stress intensity factor Kin (1) and (3) has the generic form

K=YT/LL " &%, @

L is a characteristic dimension of the crack geometry which for the specimens discussed
here is taken to be the crack length. T is a representative stress amplitude. By definition ¢
is the phase of KL*;  can be interpreted as the phase of the tractions at r = L assuming
that (1) still holds at this distance ahead of the crack tip. Y is a dimensionless geometric
factor. Thus the calibration of a crack geometry is reduced to determining Y and y for a
range of crack length-to-width ratios, properties of the material pair and load combinations.
Dundurs (1968) has shown that the solution for a traction-prescribed interface crack
problem depends only on two dimensionless material parameters, « and f, defined by

_ kgt h=(x +1)
Tk + D+ (x, + 1)’

T~ 1)—(x,~ 1)
T T+ )+ (x,+1)

B (5)

where I' = y,/pt2. So Y and ¢ in (4) depend on material properties only through « and f.

3.2. Variation of phase angle with distance

The normal and shear tractions ahead of the crack tip are given by (3). When ¢ # 0
we cannot define a mode | and mode 2 stress intensity factor analogous to K; and K, used
in the fracture mechanics of a homogeneous material. For £ # 0 the ratio of normal to
shear tractions ahead of the crack, given by ¢,, is no longer constant. It can be seen from
(3) that §, = ¢, +¢ln (ry/r|) when distance changes from r, to r,. Therefore the phase
change Ay as predicted by the K field is



574 N. P. O'Dowp er al.

77

Fig. 3. Infinite plate with crack subjected to remote tension.

Ay =¥, —y, =cln (}) ()

The variation of phase angle over large distances can be significant even when ¢ is small.

To illustrate this point we consider the geometry shown in Fig. 3.. A finite crack of
length 2a lics on an interface between two matcerials subjected to remote normal stress, o
at infinity. (Note that continuity of strains across the bond line requires that the normal
stress parallel to the bond line be discontinuous.) A more general version of this problem
is solved in Rice and Sih (1965). The full ficld normal and shear tractions ahead of the right
crack tip are

¢ xX+a ) X+a
Oylien = e [\t €os {:: In (—w——)} + 2az sin {1: In (___._,)}:]
\/x:—a“ X—d X~
Olomo = —20——2- [2(18 cos {e in (%E—E)} +x sin {L‘ In (:iZ)}:I ¥l
X —a - -

where x measures distance from the center of the plate. The phase angle ¢, is defined as
tan ¢, = (0,,/0,,)s. 0. Figure 4 shows the variation of phase angle (in degrees) with distance
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Fig. 4. Variation of phase angle with distance for crack in infinite plate for three values of &
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from the crack tip given by the stresses in (7) for ¢ = 0.01, 0.05 and 0.1. These values of ¢
correspond to material moduli typical of a metal/metal, a metal/ceramic and an epoxy/
ceramic interface respectively, under plane stress conditions.

We can see that the phase shift due to ¢ is quite a strong effect. When & = 0.05 the
phase shift over two decades of distance is about 11° and for ¢ = 0.1 it is about 25°. On a
plot of log (r/a) the phase shift predicted by the X field (6) is a straight line. It can be seen
that the variation of ¥, based on (7) is essentially linear for log (r/a) < — 1. Though not
shown, the phase shift given by the K solution closely matches the linear portion of the
curves in Fig. 4. The change of phase angle with distance may be characterized using the
phase index &*. defined by &* = (180/n)e In 10, which has the interpretation of the phase
change in degrees over a decade increase in distance.

3.3. Mode mixity and toughness surface

There is ample experimental evidence that interfacial fracture toughness depends on
mode mixity. Since phase angle depends on distance from the crack tip, an unambiguous
specification of mode mixity for an interface crack is required.

When ¢ = 0, the mode mixity is fully specified by

tanw=(g’-‘—’-) , asr—0. (8)
yy/9=0

An equivalent definition in terms of the classical stress intensity factors K, and K, is

tan y = 9)

K:

The mode mixity concept can be extended to oscillatory fields by defining

a
tany = | = 10
an 'p (ay)')ﬂ-o.r-f, ( )

or in terms of the complex stress intensity factor K

J= Im {KL*}

tan = .
Re {KL*}

(n

Here it is necessary to introduce a fixed length L in order that the mode mixity be specified
unambiguously. L must be independent of the overall specimen size and spec1mcn types; a
sensible choice of L should fall between the inelastic zone size and the specimen size. For
example, £ = 100 um is suitable for many brittle bimaterial specimens at the laboratory
scale. f is calculated from y the phase of KL* using (6):

Y =y+eln (L/L). 12)

The mixed mode fracture condition is then

$($) = %.(¥) (13)

where 7 is the energy release rate given by

1-p2

Y = 7+

IK)? (14)

where
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E’ = E (1 —v") for plane strain and £” = E for plane stress.

Thus fracture resistance is unambiguously specified by a curve %.({). together with a
length L for the definition of . This engineering approach to quantifying the interfacial
fracture resistance is an extension of the existing theory for homogeneous isotropic solids.
The conceptual basis for this approach is summarized in Rice (1988) and several articles in
a volume edited by Riihle er @l. (1990). The experimental implementation can be found in
Wang and Suo (1990). Liechti and Chat (in press) and Ahmad and Majumdar (unpublished).

3.4. Near tip contact
The displacement jumps across the crack face are given by

, - Sk - |
O, +10, = K oo \/;:,{,«w Sparing L (16)
E* cosh me "1 +4¢° -

where 7 = tan "' 2e. ris the distance along the crack face measured from the crack tip. This
solution predicts contact between the crack faces (ie. 8, < 0) for all values of ¢ whene # 0.
The K solution is not valid within the zone of contact. Nevertheless, for a range of  this
region is confined to a distance from the crack tip that is smaller than physically relevant
size scales and within this range of ¢, K can still be used to characterize the crack up ficld.
A crack is defined as being open if

d =20 for r.<r<gl (17)

v ¢

and r. «< L (Rice, 1988 ; Shih and Asaro, 1989), r, is thus the largest r for which the opening
gap o, is negative. From (10) we see that fore > 0

roflo=expl—{(n/2+y —)el (i8)

Rice (1988) suggests the requirement that /L < 0.0t From (17) and (18) this implics that
for £ > 0 the crack tip state may be characterized by the X ficld when

—-n/ 24660 <y <nj2+ 2 (19)
(making the approximation that tan "' 2z = 2¢). For £ < 0 the open crack range is
-2+ 2e < < 7f2+6.60. (20)

A similar expression for the range of ¢ for an open crack has been provided in Wang and
Suo (1990). This is a conservative estimate as discussed in a recent work by Yang and Shih
(unpublished).

The specimens analyzed in this paper are calibrated for |¢| < 1207 (see Fig. 9 for
example). Equations (19) or (20) predict a closed crack for large negative and positive phase
angles. Therefore at these phase angles the interpretation of test data using A may be
questionable. In the above argument we have assumed that the crack faces are perfectly
smooth. In practice there will be asperitics on the crack faces so contact may occur even if
3, 20.

3.5. K Dominance
We next address the subject of K dominance. i.e. the existence of a region within which
the stresses are well approximated by the bimaterial K field.
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It is assumed that close to the crack tip there is a region where non-linear effects
dominate or where crack tip contact may occur, as discussed in the previous section. In
order for K to characterize the ficlds we require the existence of anannularregionr,. < r < L
where the fields are well approximated by the K solution. r,, is the larger of the plastic or
contact zone sizes. A more complete discussion of the size requirements for the existence
of a K dominant region is provided in a review article by Shih (in press).

The question of K dominance is addressed by comparing the full field stresses with the
K field given in (1), scaled by the appropriate K value. We first consider the geometry shown
in Fig. 3. The characteristic length for this geometry L = 2a. The stress intensity factor at
the right hand tip is

Re {KL*} = o /na. Im {KL*} = 2¢6,/ra. @n

Intheform @) weget T=0, ¥ = /(1 +4e’)n/2and ¥ = tan~ ' 2¢.

Figure 5a shows the comparison of the full field stresses given by (7) with the K solution
given by (3) for ¢ = 0.05. The K field stresses are indicated by the open circles and triangles;
the full field solution is given by the solid and broken lines. Note that the shear stress
becomes negative close to the crack tip. This is a manifestation of the phase variation with
distance discussed in Section 3.2. Good agreement between the X field and the full field
solution is seen up to about r/fa = 0.2, For this geometry and applied load, the predicted
contact zone is many orders of magnitude smaller than the crack length. If in addition the
zone where non-linear effects are important is also small compared to the crack length, then
K dominance holds for this geometry.

To investigate A dominance in the finite-sized specimens calibrated in the paper, we
compare numerically generated full field stresses with the K ficld. The computational model
used is discussed in Scction 4.1, For cach specimen we consider the case when a = —0.5
and ff = —0.125 (¢ = 0.04). The crack length to specimen width a/ W is 0.3 in all cascs. For
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Fig. 5. Comparison of X field with full ficld solution. (a) Infinite plate with crack, (b) asymmetric
bend specimen, (c) three-point bend specimen, (d) Brazilian disk.
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the four-point bend configuration the relative offset s W is 0.1 giving = 65 . For the
Brazilian disk the compression angle ¢ is 7.5 giving > —45 at the right hand tip. For
the three-point bend specimen ¢ = 3'. Figure 5b-5d shows the normal and shear stress
ahead of the crack for the asymmetric four-point bend specimen. the three-point bend bar
and the Brazilian disk. Again the K field solution is indicated on the plots by the open
circles and triangles. We see that in all cases the K field is in good agreement with the full
field solution over a significant fraction (about one tenth) of the crack length. Similar
agreement is seen for all material combinations and crack geometries investigated. So
provided the condition for an open crack. i.e. (19) or (20). is fulfilled and the zone of non-
linear effects is small, a region of K dominance will exist for each specimen. Remarkably,
the K dominant zone can extend to as much as one fitth of the ligament, ¢.g. Fig. 3a. ¢
and d.

4. SPECIMEN CALIBRATION

4.1. Computational mode!

A finite element model is used to solve the elastic boundary value problem. The model
employs 4 noded quadrilateral elements. Figure 6a shows the finite element mesh used to
model the bend bar (four-point and three-point configurations) with crack length to width
ratio a/ W of 0.3. A typical mesh of the specimen has about 700 elements and 800 nodes.
Figure 6b shows the mesh used to model the Brazilian disk specimen. A typical mesh
contains about 1100 elements, and 1200 nodes. The crack tip is surrounded by an arrange-
ment of wedge-shaped 4-noded elements. The nodes at the crack tip are constrained to have
the same displacement which gives a good representation of the R singularity. The near tip
mesh is shown in Fig. 6c. Different clastic propertics are assigned to regions modeling
materials Tand 2. For the bend bars 8/ = 3 in all cases and for the asynunctric bend bar
A7B = 2/3. To cxtract the phase of A the interaction energy method of Shib and Asaro
(1988) is uscd. A description of this method is provided in the Appendix. The path-
independent integrals % and % used inevaluating Y and i are calculated using the domain

(a)

r (b) (©

crack

i

Fig. 6. Finitc element meshes used. (a) Bend bar, (b) Bravilian disk, (¢) near tip mesh.




Measuring interfacial fracture toughness 579

integral method (Moran and Shih, 1987). For every solution 20 or more domains were used
and the difference between the values extracted from the different domains is less than 1%.

4.2. Material parameters

The specimens have been calibrated for a range of x and for two values of 8, 8 = /3
and /4. This corresponds to considering a range of E;/E, and holding v, and v, fixed at
1/3. B = a/4 corresponds to a plane strain assumption and 8 = 2/3 a plane stress assumption.
The values of x chosen are a = —0.9, —~0.75., —0.5 and —0.25, which correspond to
E,/E, = 19,7, 3 and 1.667 respectively. £ ranges from 0.002 to 0.1. This range includes most

material combinations of interest. We have also included for comparison the calibration for
a homogeneous material, x = § = 0.

We should emphasize that for a given value of 2 and §, the K solution applies to both
plane strain and plane stress specimens. However « and f correspond to different values of
Young's modulus and Poisson’s ratio depending on whether plane stress or plane stress
conditions apply.

4.3. Calibration of four-point bend specimens
The generic form of K given in (4) for the bend bar geometry is

K=YT/aa ¥ (22)

where a is the crack length. Guided by the expression for a finite crack lying on an interface
between two dissimilar materials we write K in the form

Re {Ka"} = {af \(a/ W, a, B) = 2etg, (a/ W, x, /f)}\/a

Im {Ka"} = {tfs(a/ W, a, B)+2e0g,:(al W, a, /i)}\/a. (23)
a and t are the nominal tensile and shear stresses along the crack plane and a/ W is the ratio
of crack length to specimen width. This form can be confirmed using dimensional analysis
and linearity. Note that the four functions /), 5, ¢, and g, are symmetric with respect to

and fi,i.c f(—a, —ff) = f(x, b) where fis any of the four functions, /1, f1. ¢, or g,. Changing
the sign of 2z and f# corresponds to interchanging materials 1 and 2.

4.3.1. Symmetric configuration. The symmetric four-point bend configuration, shown in

Fig. la, is used to obtain phase angles close to zero. The normal and shear stresses ahead
of the crack are given by

- p 380 d t=0 24
o=Pl o] and t= (24)

where P is the applicd load per unit thickness. Substituting into (23) we get

; 38 - 38
Re {Ka®) = P[iiﬁ} fiJa. Im{Kd®) = P[,, W,]-:q,\/;. (25)

We can recast these expressions for K in the form of (22) by writing

T=a=P[2W,], = Jfi+eg,)%, aj/—-tan"{f } (26)

4.3.2. Asymmetric configuration. For the asymmetric bend configuration the stresses on the
crack plane are given by

SAS 29:5-D
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0 60s s
T = — p;,. g = — Ii:z’ = 61 ﬁ; (:7)

where @ = — f’(B~A),'(B+A) is the shear force per unit thickness and s is the load offset.
(Note that Q is negative so & and t are both positive.) Substituting the expressions for ¢
and 7 into (23) we get

i PIB-A
Re | Kd®} = — [**“‘*] {(6s/ W) f, — 269}/,

W[l B+4
iy PiIB-—-Ai,
Im {Kd"} = W !:B_:}_—w;] o+ 125/ Weg .} a. (28)

The advantage of this form for K is that the dependence on s/#"is given explicitly. The
functions f, and g, are the same as in (26). Again combining these two equations to give
the form of Kin (22) we get

PlB-4 R ¥
I e D N S (A T R 2
W[B-FA} Y \/).+Y‘ ¥ = tan {Yn} (29)

where
Vo= (65/)f, = 2ig,, Yy =f4 (125 W)y, (30)

To achieve negative phase angles the positions of both loading and support points are
interchanged. (To ensure an opening moment at the crack tp the load is applied to the
right of the crack line with respect to the orientation of Fig. 1h) 7, ¥ and ¢ arc again given
by (29) with

Yy = (0s/W)f +2eq,, Yy = —f1+ 125/ W)y, 3hH

Therefore to calibrate the four-point bend specimen fully we need only find the four
functions, /). /5. ¢, and g,. These can be obtained by solving two boundary value prob-
lems —using the symmetric configuration we can obtain f, and ¢, directly using (25), and
similarly using (28) with s = 0 we can obtiin /5 and ¢,.

The functions /1, /5, ¢, and g. are plotted in Fig. 7a-h for the material combinations
considered. We see that /) and g, arc almost independent of o and 8 over the range of
values chosen. f, and g, show stronger dependence on « and fi. Note that the calibration
functions for the four-point bend bar are independent of the ratios A/ W and 8/ W.

As shown earlier we can calculate Y and ¢ for each geometry from these four functions.
Figure 8a-d gives Y and ¢ versus o/ W for the symmetric configuration for the full range
of « and f considered. Y depends very weakly on x and f; however, ¢ has a strong
dependence on 2 and f. Figure 9 gives Y and ¢ for asymmetric configuration for various
a/W ratios with x = —0.75, § = ¢/4. Figurc 9a and b is for the “posilive” set-up shown in
Fig. b and Fig. 9¢.d is for the negative™ set-up. The horizontal dotted line in Fig. 9b.d
indicates the range of  for which we have an open crack as discussed in Section 3.4.
For this material combination, ¢ = 0.06 so from (19) the crack is open in the range
—67" <y <97,

A similar calibration for a homogeneous material, requiring only two functions. f,
and />, has been given in Suresh ef af. (1990). Howcver, the sign of the phase angle ¢ (which
is equivalent to our ) should be switched. This does not affect the results presented
therein as the fracture toughness curve for a homogencous material is symmetric, i.e.

K(-¢) = K{¢).
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Fig. 7. Plot of functions f,, /3, 9.. g, versus a/W for four-point bend specimen over a range of x:
(a)-(d) B = /4, (e)-(h) B = /3.
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Fig. 8. Plot of ¥ and ¢ versus o/ W for symmetric bend specimen for a range of x. (1) and (b)
f=a4 (Cland (D f = 23

4.4, Three-point bend specimen

The form of (23) could be utilized in calibrating the three-point bend specimen.
However, for the three-point bend specimen there is an undetermined shear force acting
along the interface. The calibration therefore depends additionally on the loading through
the ratio B/W. We thercfore provide Y and ¢ directly via

K= YT /aa " ¢ (32)

where Y and ¢ are understood to depend on B/ W and o/ #. In this case T'= PG3B/WH). If
materials | and 2 are switched Y remains the same but the sign of W is switched.

Figure 10a~d shows Y and ¢ versus af W for the three-point bend ovgr the runge of o
with f§ = 2/3 and «/4 as before. The functions given are for B/W = 3. The features are
simifar to that seen earlier for the symmetric four-point bend configuration. The dependence
on BfW is weak. If B/W is increased by a factor of 3, Y increases by 4% and ¢ decreascs
by about 2°,

4.5. Braczilian disk
The form of (23) is not applicable to the Brazilian disk specimen. We write K once
again in the form of {4) as

K= YT /2a(2a)"" e* (33)
where a is the half crack length. For the disk 7 = P/2W where W is the radius of the disk.

Note that the dependence of Y and ¢ on compression angle § is not known explicitly.
Furthermore the stress intensity factors at the two crack tips will not be the same, so Y and
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Fig. 9. Plot of ¥ and ¢ versus s/W for iasymmetric bend specimen for x = ~0.75, ff = af4. (a) and
(b) “positive” set-up, (¢} and (d) “negative™ set-up.
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Fig. 10. Plot of Y and ¢ versus a/W for three-point bend specimen for a range of a. (a) and (b)
B =a/4, (c) and (d) f = 2/3.
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Fig. 11. Convention used in definition of phase angle at left and right tip for Brazilian disk.

 must be provided for each tip. The coordinate system used in the definition of y at the
right and left tip is shown in Fig. 1 1.

In Figs 12 and 13 we have plotted Y and ¢ at the left and right tip for a’H = 0.3 and
0.5, respectively. The compression angle 0 ranges from 0 to 30°. Y, and Y, are the
amplitudes at the right and left tip, and ¥, and ¥ are the phase angles at the right and
left tip. For negative compression angles Y and  for the left and right tips are switched.
i€, Yo =0) = V(). Vo —0) = ¢1e(0) and vice versa. If materials t and 2 are
switched Y and ¢ at the two tips are interchanged and also the sign of ¢ is changed. i.c.
Yigd =2, =) = YViw(2 ). and ¢l — 2, = ) = = (2. ) and vice versa.

4.6. Calibration for residual stresses

The fabrication of a bimaterial specimen often involves large temperature changes in
the specimen. For example diffusion bonding at clevated temperatures is commonly used
to join the two materials. This can give rise to large residual stresses after cooling due to
the difference in the thermal expansion coctlicients of the two materials. These residual
stresses produce a stress intensity factor which contributes to the resultant K.

As an example we calculate K due to residual stresses in the bend bar geometry
shown in Fig. 1. The thermal stress problem can be solved using Eshelby's cut and paste
(superposition) procedure. With no loss of generality we assume that o, > «,, where z, and
a, are the thermal expansion coetlicients of materials 1 and 2.

The upper and lower materials are first considered to be separate. The upper material
undergoes a stress-free uniform thermal contraction with €, = AxAT where Ax = %, — %,
and AT is the temperature change. In order to maintain compatibility at the bimaterial
interface a normal stress, 0 = AdATE /(1 —v ) (in plane strain) parallel to the interface is
then applied. For this step K = 0 as the upper and lower halves are sepurate. The upper
and lower materials are then welded together and the applied stress is removed by applying
a in the opposite sense. K due to the residual stress is thus found by solving the boundary
value problem shown in Fig. 14. (For o = f# = 0 this produces a pure Mode II ficld at the
crack tip.)

Y and Y are plotted in Fig. 15a-d for the material combinations considered.
T = AxATE,/(1 =) for plane strain. For plane stress T = AxATE, (L = a as before). K
obtained from the thermal analysis is then superimposed on the K value obtained for the
experiment.

It should be noted that the above analysis does not allow for thermal relaxation of
stresses at high temperatures, as would be encountered under diffusion bonding conditions.
When relaxation of stresses occurs our analysis overestimates the K due to residual stresses.

5. DISCUSSION

We have calibrated two types of specimen which can be used to measure interfacial
fracture toughness as a function of mode mixity. Heretofore sandwich specimens have
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Fig. 14. Boundary value problem solved to find K due to residual stress in bend bar. £ = E,/(1 —v,)
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o=4aATE

in plane strain; £, in plane stress.
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primarily been used to measure interfacial toughness. These specimens have the advantage
that the residual stress in the layer does not affect the stress intensity factor and can be
ignored when evaluating interfacial toughness. Also these specimens can be calibrated easily
in terms of the stress intensity factor for a homogeneous specimen of the bulk material (Suo
and Hutchinson, 1989). However a crack in a sandwich specimen may kink out of the
interface under certain conditions and grow in the interlayer (Wang and Suo, 1990) in
which case a valid interfacial toughness measurcment is not obtained. Crack extension

within the sandwiched layer does not arise in the specimens proposed in this paper.

With regard to the relative merits of the specimens calibrated here, the symmetric four-
point bend specimen is preferred to the three-point bend specimen for measuring fracture

B=a/t

[+3
— 0.0
—-—0.23
—_———0.5
cesesnaace (). 75
9

Fig. 15. Y and ¢ versus g/ for K in bend bar due to residual thermal stress for a range of a; (a)

100.0

100.0

90.0

60.0 Y

and (b) f# = a/4, (c) and (d) § = a/3.
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toughness for phase angles close to zero. If the loading point is slightly off-center for the
three-point bend specimen this will change the stress intensity factor at the crack tip. This
is not the case for the four-point bend specimen as the bending moment is constant over
most of the length of the specimen.

The full range of mode mixities can be obtained using the Brazilian disk specimen.
This specimen s attractive because of the ease of loading of the specimen. However.
introducing a crack in the disk may be difficult. Furthermore since the specimen has two
crack tips it may be difficult to determine the tip at which {racture first initiates. This leads
to some ambiguity in determining fracture toughness using this specimen. This difficulty
does not arise with the bend bar which has a single crack tip. Distance measurements are
also easier to make using a bend bar type geometry as one is measuring a linear distance,
while with the disk specimen angular measurements are required which in general cannot
be made with the same accuracy.

If a stfl material is bonded to a more compliant material local indentation may occur
at the load points located in the softer material. For this reason it may be convenient to
use test specimens in which the compliant layer is held between two layers of the stiffer
material. This ensures that the load and support points are located in the stiffer material.
Provided that the span of the intermediate layer is comparable to the specimen width 1
the calibration functions for this type of specimen are the same as those presented here.
Calculations have been carried out for the bend bar specimen where the height of the
intermediate layer was equal to the specumen width, The results obtained differed negligibly
from those presented here,
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APPENDIX

A numerical method for extracting the real and imaginary part of X has been presented by Shih and Asaro
(1989). The energy release rate for a crack lying on an interface between two isotropic elastic materials is

s - ik (Al)

*

The effective modulus £* was defined in Section 3.3. K, and K, are the real and imaginary parts of K.
If we superimpose an auxiliary field of known intensity &, onto the actual field. the auxiliary field has energy
release rate

S =2k (A2)
and the total energy release rate is
Fra =~ [(Ki+k,)"+K:). (A})
We define the interaction energy release rate as
G =C—(F+9,.,). (A4)

Substituting into (Ad) we get

Thus for an auxiliary ficld of known intensity factor, say A, = [, we can extract the actual K, via

C BN,
K, = Ao Gt (ASa)
Similarly K, is determined from
K HE g ASb
= 2\ __ﬂg I ( )

where %, is the interaction energy associated with an auxiliary field of intensity, k, = L.
The energy release rate % in linear clasticity is given by the path-independent J-integral :

> 0 I
4 =J =J’<£‘7m£u0u‘au"u—)"rdr (A6)
r dx,

where T is a contour beginning at the bottom crack face and ending at the top face, n, is the outward unit normal
to I and 6, is the Kronecker delta.
Using reciprocity and egns (A4) and (A6) we write

. N
G = | | Oulbn)ind), ~a, 2} (o ), ar (A7)
t X Jun Tk

% is also path-independent by virtue of the path-independence of (A6). The auxiliary ficlds (4,)... (£
(ufix,),. are known and the actual ficlds are obtained from the full field finite element analysis. Thus by
cviluating the path-independent integral for %, the magnitude and phase of K can be evaluated from (AS).



